Personal profile

Disciplinary Calssification

MAT/05

Fingerprint Fingerprint is based on mining the text of the persons scientific documents to create an index of weighted terms, which defines the key subjects of each individual researcher.

  • 5 Similar Profiles
Schrödinger equation Mathematics
Schrödinger Mathematics
Decay Mathematics
Strichartz estimates Mathematics
Estimate Mathematics
Smoothing Mathematics
Magnetic field Mathematics
Scaling Mathematics

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Projects 2012 2012

Nonlinear equations
Dirac equation
Point interactions
Invariant measure
Nonlinearity

Research Output 2004 2015

  • 315 Citations
  • 10 h-Index
  • 27 Article
  • 1 Conference contribution

Erratum to: Relativistic Hardy Inequalities in Magnetic Fields [J Stat Phys, 154, (2014), 866-876, DOI 10.1007/s10955-014-0915-0]

Fanelli, L., Vega, L. & Visciglia, N. 2015 In : Journal of Statistical Physics. 158, 6, p. 1413-1414 2 p.

Research output: Contribution to journalArticle

2 Citations

Improved time-decay for a class of scaling critical electromagnetic Schrödinger flows

Fanelli, L., Grillo, G. & Kovařík, H. 15 Nov 2015 In : Journal of Functional Analysis. 269, 10, p. 3336-3346 11 p.

Research output: Contribution to journalArticle

Schrödinger
Scaling
Heat semigroup
Positive definite
Decay
1 Citations

Resolvent and Strichartz estimates for elastic wave equations

Barceló, J. A., Fanelli, L., Ruiz, A., Vilela, M. C. & Visciglia, N. 1 Nov 2015 In : Applied Mathematics Letters. 49, p. 33-41 9 p., 4780

Research output: Contribution to journalArticle

Elastic waves
Wave equations
Resolvent estimates
Strichartz estimates
Wave equation

Sharp hardy uncertainty principle and gaussian  profiles of covariant schrödinger evolutions

Cassano, B. & Fanelli, L. 1 Mar 2015 In : Transactions of the American Mathematical Society. 367, 3, p. 2213-2233 21 p.

Research output: Contribution to journalArticle

Uncertainty principle
Schrödinger
Logarithmic convexity
Schrödinger equation
Existence of solutions
6 Citations

Time Decay of Scaling Invariant Electromagnetic Schrödinger Equations on the Plane

Fanelli, L., Felli, V., Fontelos, M. A. & Primo, A. 1 Aug 2015 In : Communications in Mathematical Physics. 337, 3, p. 1515-1533 19 p.

Research output: Contribution to journalArticle

Schrödinger equation
Scaling
electromagnetism
scaling
decay